共模扼流圈在CAN电路中的趋势
经典丶
|
2019.12.30
|
31213
+关注

一、共模扼流圈的作用:

CAN通讯协议使用差分信号可以防止任何噪声耦合,每半个差分对 (称为CANH和CANL)和它们各自的噪声的对称变化相互抵消。

但是,没有CAN收发器是完美的,这是由于微小的非对称CANH和CANL信号的存在可能导致差分信号的不完全平衡。发生这种情况时,共模 (CANH / CANL的平均值)的CAN信号将不再是恒定的直流值。相反,它的数值会与噪声相关。

两个主要的不均衡类型会导致这个噪声。其中一个就是显性(被驱动)和隐性(高阻抗)状态期间稳定状态共模电压电平之间的不匹配。

这个稳定状态不匹配会导致一个类似于CAN数据本身缩放版本的噪声图形。这个噪声图形在它的频谱内很宽,表现为一系列延伸至极低频率且间隔均匀的离散频谱线。定时不匹配会导致一个由短脉冲或干扰组成的噪声图形,只要数据中有边缘变换,它就会出现。这个噪声图形的频谱含量往往集中比较高的频率上。

图1中的波形显示了一个可以在典型CAN收发器的输出上观察到的共模噪声。在这幅图像中,黑色轨迹线(通道1)显示CANH,紫色轨迹线(通道2)显示的是CANL,并且绿色轨迹线(数据功能)是CANH与CANL的和。这个求和的过程给出了一个波形,它的值等于此时一个指定点上共模电压的2倍。

这个器件的传导放射连同一个普通汽车原始设备制造商(OEM)限值线一同绘制。

在CAN协议电路中需要共模扼流圈。最主要因素是收发器内CANH/CANL 两者的“稳定状态共模电压电平 (Steady-State Common-Mode Voltage Level)”及时间值的输出差异。这是发射器内半导体级的问题,难以避免,在高频环境下影响更明显。为了减少输出噪声的后续影响,有必要考虑外部滤波器元件。

共模扼流圈简单易用,能有效解决CAN收发器输出噪声问题。该元件由两个线圈组成,两个差分信号通过线圈产生磁通量(magnetic fluxes),使两个差分信号相互抵消。因此不会有净通量积累在核心,就好像在同步输出之前短路CAN信号一样。

另外,扼流圈的电感效应与CAN收发器的输出阻抗配合——当总线处于隐性状态(recessive state) 时,为信号提供高阻抗;当总线处于主导状态(dominant state) 时,为差分信号提供低阻抗优化。

这项技术在减少CAN总线放射方面十分有效。如下如所示:

二、共模扼流圈的缺点及克服:

增加一个共模扼流圈也有一些缺点。一般来说,共模扼流圈可能会产生信号完整性问题,例如信号损耗或串优 (crosstalk),及其中最严重的意外后果是因电感式反激产生极高的瞬态电压,使CAN总线连接到直流电压,导致高瞬态电压(High Transient Voltage) 。其瞬态响应是受到终端、总线负载、直流短路、电压电平、布线和其他影响,所以很难完全消除、防范或预测。

扼流电感产生的共模噪声

克服方案:抑制瞬态高压

由于瞬态电压是产生于共模扼流圈和收发器之间,如下图的线路中,在两者之间加上TVS齐纳二极管作为“瞬态保护器”。这样,除了有效压制收发器与扼流圈之间的高瞬变电压,也能实现保护收发器免受高脉冲破坏。

CANH/CANL、扼流圈与瞬态保护器连接图

使用此电路,瞬态电压可以在控制下被充分压制。在选择正确的保护装置时,请留意齐纳二极管响应速度必须足够快以钳制瞬态电压。此外,齐纳二极管的电容值也必须考虑。如果电容值太高,瞬态电压会与扼流圈的电感一起工作并在总线上产生振铃信号(ringing signal)。虽然这种振铃不会损坏CAN信号,但它好像电磁一样,会形成更高的发射频率。

如上图所示:常用扼流圈是ACT45B,常用的瞬态二极管有NUP2105等

三、新趋势:无扼流的CAN设计

1、“分离终端(split termination)”

是现在较普遍的解决方案,大多数生产商都能提供应用线路的方案。分离终端电路是由两个相等值的分流电阻和一个旁路电容组成,电容连接在电阻和GND之间,形成两个低通滤波器,将高频嘈声引向地面。请注意,两个电阻必须接近相同的值。但由于缺少了改善共模抑制比及阻抗优化,也没有瞬态保护,所以仍有工程师会继续使用扼流圈,并将两者合并使用,以TI公司收发器为例,其建议的线路图如下所示:

CANH/CANL、扼流圈、瞬态保护器与分离终端连接图

2.从芯片内部设计

也有芯片制造商希望从半导体设计和制造开始,严格控制芯片本身,以确保CAN总线波形的平衡。例如,TI的TCAN1042系列希望帮助工程师减少对扼流圈的依赖。

TI TCAN1042功能框图

针对TI TCAN1042-Q1 CAN收发器的瞬态波形如下图所示:

针对TI TCAN1042-Q1 CAN收发器的放射曲线图如下所示:

再例如:NXP的第二代CAN收发芯片 TJA1041、TJA1040推荐电路设计:

TJA1041分离终端

TJA1040分离终端

精选留言
延伸阅读
2020.10.02
13886阅读
更多报告干货
写留言
4957
阅读
收藏
回到顶部